Telegram Group & Telegram Channel
Напишите логистическую регрессию

import numpy as np

class LogisticRegression:

def __init__(self, learning_rate=0.01, n_iters=1000):
self.learning_rate = learning_rate
self.n_iters = n_iters
self.weights = None
self.bias = None

def fit(self, X, y):
# initialize weights and bias to zeros
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0

# gradient descent optimization
for i in range(self.n_iters):
# calculate predicted probabilities and cost
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
cost = (-1 / n_samples) * np.sum(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))

# calculate gradients
dw = (1 / n_samples) * np.dot(X.T, (y_pred - y))
db = (1 / n_samples) * np.sum(y_pred - y)

# update weights and bias
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db

def predict(self, X):
# calculate predicted probabilities
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
# convert probabilities to binary predictions
return np.round(y_pred).astype(int)

def _sigmoid(self, z):
return 1 / (1 + np.exp(-z))


#python
#машинное_обучение



tg-me.com/ds_interview_lib/611
Create:
Last Update:

Напишите логистическую регрессию

import numpy as np

class LogisticRegression:

def __init__(self, learning_rate=0.01, n_iters=1000):
self.learning_rate = learning_rate
self.n_iters = n_iters
self.weights = None
self.bias = None

def fit(self, X, y):
# initialize weights and bias to zeros
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0

# gradient descent optimization
for i in range(self.n_iters):
# calculate predicted probabilities and cost
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
cost = (-1 / n_samples) * np.sum(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))

# calculate gradients
dw = (1 / n_samples) * np.dot(X.T, (y_pred - y))
db = (1 / n_samples) * np.sum(y_pred - y)

# update weights and bias
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db

def predict(self, X):
# calculate predicted probabilities
z = np.dot(X, self.weights) + self.bias
y_pred = self._sigmoid(z)
# convert probabilities to binary predictions
return np.round(y_pred).astype(int)

def _sigmoid(self, z):
return 1 / (1 + np.exp(-z))


#python
#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/611

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Библиотека собеса по Data Science | вопросы с собеседований from jp


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA